

- Model Based Systems Engineering (MBSE).
- and are time and labour costly.
- and increase test diversity.
- use by the research community.
- (here an Aircraft Flight Control System)

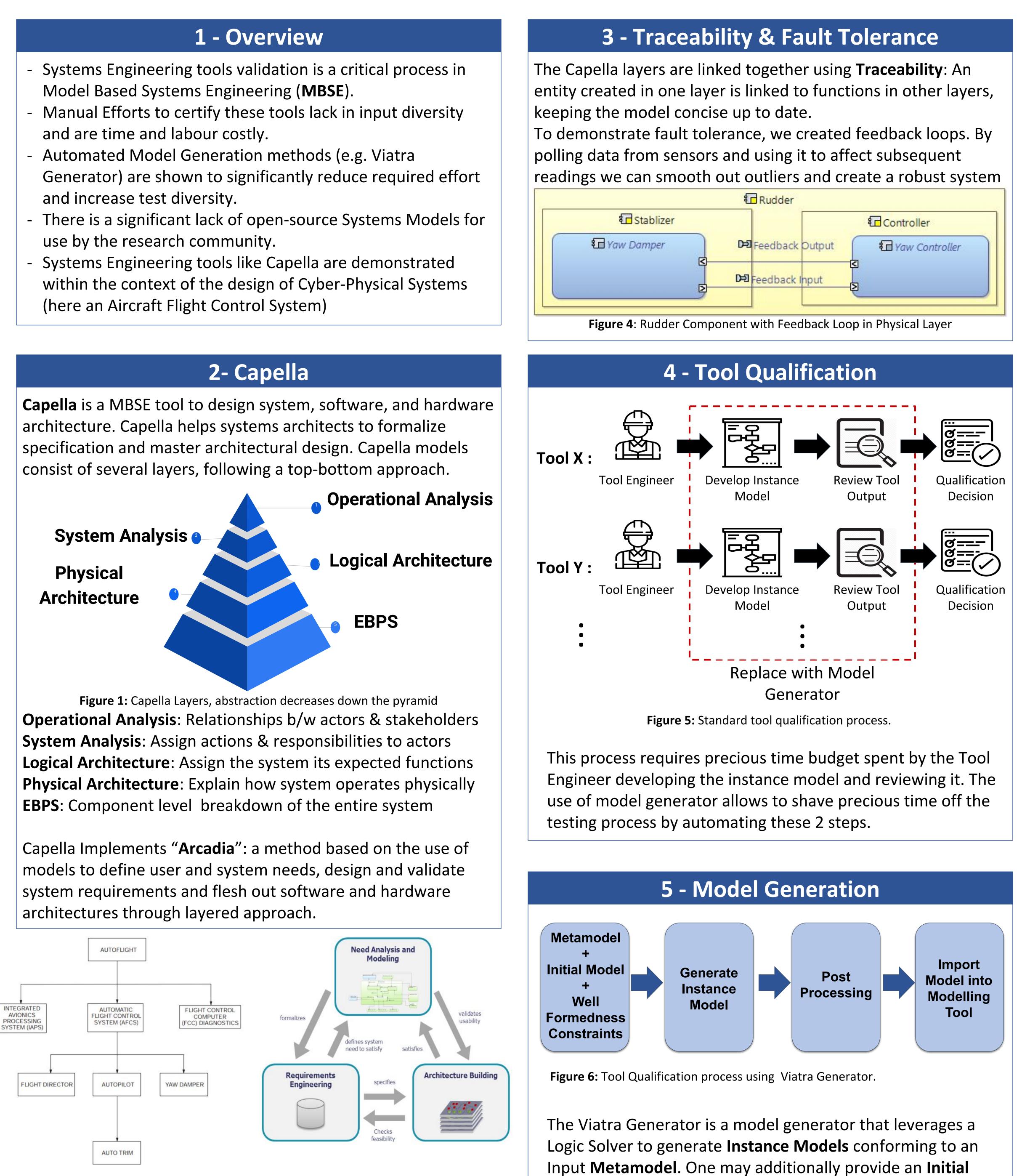


Figure 2. AFCS Architecture

Figure 3. Arcadia Method

Automated Test Generation Techniques for Systems Engineering Tools

Imad Dodin, Nada Marawan, Muhammad Huzaifa Elahi, Ahmed Elehwany DP 46, Professor Daniel Varro, McGill University

Model and additional **constraints** that constitute a model being regarded as "Well-Formed".

6 - Post Processing

We take, as a Proof of Concept, the Yakindu Statecharts Tool and explore the practicality of following the preceding approach. Significant efforts were required in post-processing:

- **Concrete Syntax:** a concrete syntax (diagrammatic representation) must be generated from the Abstract Syntax output:
- Addition of name tags: the generator is lacking in the generation of attribute values.
- **Concrete Elements**: recursively generated off of the Abstract Model
- **Bounds:** constraint attributes generated with a Constraint Solver (Choco-Solver)

7 - Future Work

Capella Model	ling Model Generation	
 Perform component l breakdown for the AF Model by delving into final EBPS layer Constructing customi templates for automa model documentatio generation Expand AFCS scope a peripheral subsystem 	FCS pipeline that performs the testing process programm - Use the test suite to find in constraints not defined by metamodel, that would cr tool. - Converge on a generalized post processing steps requ	e w nati mp y th rash

8 - Outcomes

- Development of a complete Capella Systems Model, made available to the open source community.
- Exploration of the use of Model Based Systems Engineering tools in cyber-physical system design.
- Demonstration of the capabilities of Model Generation techniques within the context of Systems Engineering Tool Qualification.
- Exploration of future considerations to be taken when using Model Generation tools to generate complex Systems Models.

9 - Acknowledgments

We would like to thank the following individuals, without whom's efforts, this project would not be possible:

- Professor Daniel Varro
- Mr. Aren Babikian
- Dr. Oszkar Semerath
- Dr. Gabor Szarnyas
- The VIATRA Development Team

Faculty of **Engineering W** McGill

